搜尋此網誌

2010年2月17日星期三

400萬年之謎:似樹巨物在樹存在前的時代

400萬年之謎:似樹巨物在樹存在前的時代
400-Million-Year-Old Mystery: Giant Tree-like Object in Epoch Before Trees Existed
February 16, 2010

The giant fossil Prototaxites is a big 400-million year old mystery. The fossils resemble tree trunks, and yet they are from a time before trees existed. The stable carbon isotope values are similar to those of fungi, but the fossils do not display structures usually found in fungi. Hence, the enigma.
巨型化石Prototaxites是一件大的400萬年的神祕事物,化石類似於樹幹,然而它們來自的時間是在樹木存在之前。穩定的碳同位素值相類似那些真菌,但化石不顯示通常在真菌中發現的結構,因此,謎。
Prototaxites have sparked controversy for more than a century. Originally classified as a conifer, scientists later argued that it was instead a lichen, various types of algae or a fungus. Whatever it was, it stood in tree-like trunks more than 20 feet tall, making it the largest-known organism on land in its day.
Prototaxites已引發爭議超過一個世紀,原先分類為針葉樹,後來科學家們爭論它實在是一地衣,不同類型的藻類或菌類。不管是什麼,它站在似樹的樹幹超過 20英尺高,使其在它的時代成為已知的最大生物體。
“No matter what argument you put forth, people say, well, that’s crazy. That doesn’t make any sense,” said C. Kevin Boyce, Assistant Professor in Geophysical Sciences at the University of Chicago. “A 20-foot-tall fungus doesn’t make any sense. Neither does a 20-foot-tall algae make any sense, but here’s the fossil.”
“無論你提出什麼立論,人們會說,好吧,那是瘋狂。這是沒有任何理智的,“在芝加哥大學地球物理研究所的助理教授凱文博斯說, “一棵 20英尺高的真菌是沒有任何理智的,一稞 20英尺高的藻類也沒有智慧,但這裡是那化石。“
Plant-like polymers have been found in the fossils, but nutritional evidence supports heterotrophy, which is not commonly found in plants. These are a few of the confounding factors surrounding the identification of Prototaxites fossils.
似植物的聚合物已在化石發現,但營養的證據支持非自養,這不是常見於植物中。這些是幾項干擾因素圍繞在Prototaxites化石的辨明。
Prototaxites existed during the Late Silurian to Late Devonian periods-- approximately 420-370 million years ago (ma). Prototaxites fossils have a consistent tubular anatomy, composed of primarily unbranched, non-septate tubes, arranged in concentric or eccentric rings, giving the fossils an appearance similar to that of a cross-section of a tree trunk. The fossil "trunks" vary in size and may be up to 8.8 m long and 1.37 m in diameter, making Prototaxites the largest organism on land during the Late Siluarian and Devonian periods.
Prototaxites存在於晚志留紀至晚泥盆世時期 - 大約 420-370萬年前(馬)。 Prototaxites化石有一持續的管狀解剖,由主要分枝,無分隔管 - 安排在同心或偏心環- 組成,給予化石的外觀類似一個樹幹的橫截面。化石“樹幹”大小不等和有的高達 8.8米長和1.37米直徑,使Prototaxites在泥盆紀和Siluarian晚期為地上的最大有機體,。
Dr. Linda Graham, one of the world's experts in the evolutionary origin of land plants at the University of Wisconsin, and her colleagues believe that they have resolved this long-standing mystery.
Their hypothesis is that Prototaxites fossils may be composed of partially degraded wind-, gravity-, or water-rolled mats of liverworts that are associated with fungi and cyanobacteria. This resembles the mats produced by the modern liverwort genus Marchantia. The authors tested their hypothesis by treating Marchantia polymorpha in a manner to reflect the volcanically-influenced, warm environments typical of the Devonian period and compared the resulting remains to Prototaxites fossils. Graham and her colleagues investigated the mixotrophic ability of M. polymorpha by assessing whether M. polymorpha grown in a glucose-based medium is capable of acquiring carbon from its substrate.

"For our structural comparative work," Graham said, "we were extremely fortunate to have an amazing thin slice of the rocky fossil, made in 1954 by the eminent paleobotanist Chester A. Arnold."

Their structural and physiological studies showed that the fossil Prototaxites and the modern liverwort Marchantia have many similarities in their external structure, internal anatomy, and nutrition. Despite being subjected to conditions that would promote decomposition and desiccation, the rhizoids of M. polymorpha survived degradation, and with the mat rolled, created the appearance of concentric circles. The fungal hyphae associated with living liverworts also survived treatment, suggesting that the branched tubes in fossils may be fungal hyphae. The very narrow tubes in the fossils resemble filamentous cyanobacteria that the researchers found wrapped around the rhizoids of the decaying M. polymorpha.

"We were really excited when we saw how similar the ultrastructure of our liverwort rhizoid walls was to images of Prototaxites tubes published in 1976 by Rudy Schmid," Graham said.

In their investigations into the nutritional requirements of M. polymorpha, Graham and her colleagues found that the growth of M. polymorpha in a glucose-based medium was approximately 13 times that seen when the liverwort was grown in a medium without glucose. Stable carbon isotope analyses indicated that less than 20% of the carbon in the glucose-grown liverwort came from the atmosphere. The stable carbon isotope values obtained from M. polymorpha grown with varying amounts of cyanobacteria present span the range of values reported for Prototaxites fossils. Taken together, these results demonstrate that the liverworts have a capacity for mixotrophic nutrition when glucose is present and that mixotrophy and/or the presence of cyanobacteria could be responsible for the stable carbon isotope values obtained from Prototaxites.

Graham and her colleagues' results demonstrate that liverworts were important components of Devonian ecosystems. Their results support previous hypotheses that microbial associations and mixotrophy are ancient plant traits, rather than ones that have evolved recently.

More information: The full article in the link mentioned is available for no charge for 30 days at http://www.amjbot.org/cgi/content/full/97/2/268

Jason McManus via the American Journal of Botany
http://www.dailygalaxy.com/my_weblog/2010/02/fossil-mystery-giant-treelike-object-in-epoch-before-trees-existed.html

巨樹島

沒有留言: