搜尋此網誌

2010年2月21日星期日

大氣中增加的二氧化碳對環境影響

大氣中增加的二氧化碳對環境影響
Environmental Effects of Increased Atmospheric Carbon Dioxide

Arthur B. Robinson, Noah E. Robinson, and Willie Soon
Oregon Institute of Science and Medicine, 2251 Dick George Road, Cave Junction, Oregon 97523 [artr@oism.org]

免費翻譯輭件:http://translate.google.com.tw/#
ABSTRACT
A review of the research literature concerning the environmental consequences of increased levels of atmospheric carbon dioxide leads to the conclusion that increases during the 20th and early 21st centuries have produced no deleterious effects upon Earth's weather and climate. Increased carbon dioxide has, however, markedly increased plant growth. Predictions of harmful climatic effects due to future increases in hydrocarbon use and minor greenhouse gases like CO2 do not conform to current experimental knowledge. The environmental effects of rapid expansion of the nuclear and hydrocarbon energy industries are discussed.

SUMMARY
Political leaders gathered in Kyoto, Japan, in December 1997 to consider a world treaty restricting human production of "greenhouse gases," chiefly carbon dioxide (CO2). They feared that CO2 would result in "human-caused global warming" ?hypothetical severe increases in Earth's temperatures, with disastrous environmental consequences. During the past 10 years, many political efforts have been made to force worldwide agreement to the Kyoto treaty.

When we reviewed this subject in 1998 (1,2), existing satellite records were short and were centered on a period of changing intermediate temperature trends. Additional experimental data have now been obtained, so better answers to the questions raised by the hypothesis of "human-caused global warming" are now available.


Figure 1: Surface temperatures in the Sargasso Sea, a 2 million square mile region of the Atlantic Ocean, with time resolution of 50 to 100 years and ending in 1975, as determined by isotope ratios of marine organism remains in sediment at the bottom of the sea (3). The horizontal line is the average temperature for this 3,000-year period. The Little Ice Age and Medieval Climate Optimum were naturally occurring, extended intervals of climate departures from the mean. A value of 0.25 蚓, which is the change in Sargasso Sea temperature between 1975 and 2006, has been added to the 1975 data in order to provide a 2006 temperature value.


The average temperature of the Earth has varied within a range of about 3蚓 during the past 3,000 years. It is currently increasing as the Earth recovers from a period that is known as the Little Ice Age, as shown in Figure 1. George Washington and his army were at Valley Forge during the coldest era in 1,500 years, but even then the temperature was only about 1?Centigrade below the 3,000-year average.

Figure 2: Average length of 169 glaciers from 1700 to 2000 (4). The principal source of melt energy is solar radiation. Variations in glacier mass and length are primarily due to temperature and precipitation (5,6). This melting trend lags the temperature increase by about 20 years, so it predates the 6-fold increase in hydrocarbon use (7) even more than shown in the figure. Hydrocarbon use could not have caused this shortening trend.


The most recent part of this warming period is reflected by shortening of world glaciers, as shown in Figure 2. Glaciers regularly lengthen and shorten in delayed correlation with cooling and warming trends. Shortening lags temperature by about 20 years, so the current warming trend began in about 1800.

Figure 3: Arctic surface air temperature compared with total solar irradiance as measured by sunspot cycle amplitude, sunspot cycle length, solar equatorial rotation rate, fraction of penumbral spots, and decay rate of the 11-year sunspot cycle (8,9). Solar irradiance correlates well with Arctic temperature, while hydrocarbon use (7) does not correlate.


Atmospheric temperature is regulated by the sun, which fluctuates in activity as shown in Figure 3; by the greenhouse effect, largely caused by atmospheric water vapor (H2O); and by other phenomena that are more poorly understood. While major greenhouse gas H2O substantially warms the Earth, minor greenhouse gases such as CO2 have little effect, as shown in Figures 2 and 3. The 6-fold increase in hydrocarbon use since 1940 has had no noticeable effect on atmospheric temperature or on the trend in glacier length.

While Figure 1 is illustrative of most geographical locations, there is great variability of temperature records with location and regional climate. Comprehensive surveys of published temperature records confirm the principal features of Figure 1, including the fact that the current Earth temperature is approximately 1 蚓 lower than that during the Medieval Climate Optimum 1,000 years ago (11,12).

CLIMATE CHANGE
While the average temperature change taking place as the Earth recovers from the Little Ice Age is so slight that it is difficult to discern, its environmental effects are measurable. Glacier shortening and the 7 inches per century rise in sea level are examples. There are additional climate changes that are correlated with this rise in temperature and may be caused by it.
Greenland, for example, is beginning to turn green again, as it was 1,000 years ago during the Medieval Climate Optimum (11). Arctic sea ice is decreasing somewhat (75), but Antarctic ice is not decreasing and may be increasing, due to increased snow (76-79).

In the United States, rainfall is increasing at about 1.8 inches per century, and the number of severe tornados is decreasing, as shown in Figures 7 and 8. If world temperatures continue to rise at the current rate, they will reach those of the Medieval Climate Optimum about 2 centuries from now. Historical reports of that period record the growing of warm weather crops in localities too cold for that purpose today, so it is to be expected that the area of more temperate climate will expand as it did then. This is already being observed, as studies at higher altitudes have reported increases in amount and diversity of plant and animal life by more than 50% (12,80).

Atmospheric temperature is increasing more in the Northern Hemisphere than in the Southern, with intermediate periods of increase and decrease in the overall trends.

There has been no increase in frequency or severity of Atlantic hurricanes during the period of 6-fold increase in hydrocarbon use, as is illustrated in Figures 9 and 10. Numbers of violent hurricanes vary greatly from year to year and are no greater now than they were 50 years ago. Similarly, maximum wind speeds have not increased.

All of the observed climate changes are gradual, moderate, and entirely within the bounds of ordinary natural changes that have occurred during the benign period of the past few thousand years.

There is no indication whatever in the experimental data that an abrupt or remarkable change in any of the ordinary natural climate variables is beginning or will begin to take place.

GLOBAL WARMING HYPOTHESIS
The greenhouse effect amplifies solar warming of the earth. Greenhouse gases such as H2O, CO2, and CH4 in the Earth's atmosphere, through combined convective readjustments and the radiative blanketing effect, essentially decrease the net escape of terrestrial thermal infrared radiation. Increasing CO2, therefore, effectively increases radiative energy input to the Earth's atmosphere. The path of this radiative input is complex. It is redistributed, both vertically and horizontally, by various physical processes, including advection, convection, and diffusion in the atmosphere and ocean.
Figure 18: Qualitative illustration of greenhouse warming. "Present GHE" is the current greenhouse effect from all atmospheric phenomena. "Radiative effect of CO2" is the added greenhouse radiative effect from doubling CO2 without consideration of other atmospheric components. "Hypothesis 1 IPCC" is the hypothetical amplification effect assumed by IPCC. "Hypothesis 2" is the hypothetical moderation effect.


When an increase in CO2 increases the radiative input to the atmosphere, how and in which direction does the atmosphere respond? Hypotheses about this response differ and are schematically shown in Figure 18. Without the water-vapor greenhouse effect, the Earth would be about 14 慢 cooler (81). The radiative contribution of doubling atmospheric CO2 is minor, but this radiative greenhouse effect is treated quite differently by different climate hypotheses. The hypotheses that the IPCC (82,83) has chosen to adopt predict that the effect of CO2 is amplified by the atmosphere, especially by water vapor, to produce a large temperature increase. Other hypotheses, shown as hypothesis 2, predict the opposite ?that the atmospheric response will counteract the CO2 increase and result in insignificant changes in global temperature (81,84,85,91,92). The experimental evidence, as described above, favors hypothesis 2. While CO2 has increased substantially, its effect on temperature has been so slight that it has not been experimentally detected.

Figure 19: The radiative greenhouse effect of doubling the concentration of atmospheric CO2 (right bar) as compared with four of the uncertainties in the computer climate models (87,93).


The computer climate models upon which "human-caused global warming" is based have substantial uncertainties and are markedly unreliable. This is not surprising, since the climate is a coupled, non-linear dynamical system. It is very complex. Figure 19 illustrates the difficulties by comparing the radiative CO2 greenhouse effect with correction factors and uncertainties in some of the parameters in the computer climate calculations. Other factors, too, such as the chemical and climatic influence of volcanoes, cannot now be reliably computer modeled.

In effect, an experiment has been performed on the Earth during the past half-century ?an experiment that includes all of the complex factors and feedback effects that determine the Earth's temperature and climate. Since 1940, hydrocarbon use has risen 6-fold. Yet, this rise has had no effect on the temperature trends, which have continued their cycle of recovery from the Little Ice Age in close correlation with increasing solar activity.

Not only has the global warming hypothesis failed experimental tests, it is theoretically flawed as well. It can reasonably be argued that cooling from negative physical and biological feedbacks to greenhouse gases nullifies the slight initial temperature rise (84,86).

The reasons for this failure of the computer climate models are subjects of scientific debate (87). For example, water vapor is the largest contributor to the overall greenhouse effect (88). It has been suggested that the climate models treat feedbacks from clouds, water vapor, and related hydrology incorrectly (85,89-92).

The global warming hypothesis with respect to CO2 is not based upon the radiative properties of CO2 itself, which is a very weak greenhouse gas. It is based upon a small initial increase in temperature caused by CO2 and a large theoretical amplification of that temperature increase, primarily through increased evaporation of H2O, a strong greenhouse gas. Any comparable temperature increase from another cause would produce the same calculated outcome.

Figure 20: Global atmospheric methane concentration in parts per million between 1982 and 2004 (94).


Thus, the 3,000-year temperature record illustrated in Figure 1 also provides a test of the computer models. The historical temperature record shows that the Earth has previously warmed far more than could be caused by CO2 itself. Since these past warming cycles have not initiated water-vapor-mediated atmospheric warming catastrophes, it is evident that weaker effects from CO2 cannot do so.

Methane is also a minor greenhouse gas. World CH4 levels are, as shown in Figure 20, leveling off. In the U.S. in 2005, 42% of human-produced methane was from hydrocarbon energy production, 28% from waste management, and 30% from agriculture (95). The total amount of CH4 produced from these U.S. sources decreased 7% between 1980 and 2005. Moreover, the record shows that, even while methane was increasing, temperature trends were benign.

The "human-caused global warming" ?often called the "global warming" ?hypothesis depends entirely upon computer model-generated scenarios of the future. There are no empirical records that verify either these models or their flawed predictions (96).

Claims (97) of an epidemic of insect-borne diseases, extensive species extinction, catastrophic flooding of Pacific islands, ocean acidification, increased numbers and severities of hurricanes and tornados, and increased human heat deaths from the 0.5 蚓 per century temperature rise are not consistent with actual observations. The "human-caused global warming" hypothesis and the computer calculations that support it are in error. They have no empirical support and are invalidated by numerous observations.

ENVIRONMENT AND ENERGY
The single most important human component in the preservation of the Earth's environment is energy. Industrial conversion of energy into forms that are useful for human activities is the most important aspect of technology. Abundant inexpensive energy is required for the prosperous maintenance of human life and the continued advance of life-enriching technology. People who are prosperous have the wealth required to protect and enhance their natural environment.
Currently, the United States is a net importer of energy as shown in Figure 25. Americans spend about $300 billion per year for imported oil and gas ?and an additional amount for military expenses related to those imports.


Figure 25: In 2006, the United States obtained 84.9% of its energy from hydrocarbons, 8.2% from nuclear fuels, 2.9% from hydroelectric dams, 2.1% from wood, 0.8% from biofuels, 0.4% from waste, 0.3% from geothermal, and 0.3% from wind and solar radiation. The U.S. uses 21 million barrels of oil per day ?27% from OPEC, 17% from Canada and Mexico, 16% from others, and 40% produced in the U.S. (95). The cost of imported oil and gas at $60 per barrel and $7 per 1,000 ft3 in 2007 is about $300 billion per year.


Political calls for a reduction of U.S. hydrocarbon use by 90% (123), thereby eliminating 75% of America's energy supply, are obviously impractical. Nor can this 75% of U.S. energy be replaced by alternative "green" sources. Despite enormous tax subsidies over the past 30 years, green sources still provide only 0.3% of U.S. energy.

Yet, the U.S. clearly cannot continue to be a large net importer of energy without losing its economic and industrial strength and its political independence. It should, instead, be a net exporter of energy.

There are three realistic technological paths to American energy independence ?increased use of hydrocarbon energy, nuclear energy, or both. There are no climatological impediments to increased use of hydrocarbons, although local environmental effects can and must be accommodated. Nuclear energy is, in fact, less expensive and more environmentally benign than hydrocarbon energy, but it too has been the victim of the politics of fear and claimed disadvantages and dangers that are actually negligible.

For example, the "problem" of high-level "nuclear waste" has been given much attention, but this problem has been politically created by U.S. government barriers to American fuel breeding and reprocessing. Spent nuclear fuel can be recycled into new nuclear fuel. It need not be stored in expensive repositories.

Reactor accidents are also much publicized, but there has never been even one human death associated with an American nuclear reactor incident. By contrast, American dependence on automobiles results in more than 40,000 human deaths per year.

All forms of energy generation, including "green" methods, entail industrial deaths in the mining, manufacture, and transport of resources they require. Nuclear energy requires the smallest amount of such resources (124) and therefore has the lowest risk of deaths.

Estimated relative costs of electrical energy production vary with geographical location and underlying assumptions. Figure 26 shows a recent British study, which is typical. At present, 43% of U.S. energy consumption is used for electricity production.

To be sure, future inventions in energy technology may alter the relative economics of nuclear, hydrocarbon, solar, wind, and other methods of energy generation. These inventions cannot, however, be forced by political fiat, nor can they be wished into existence. Alternatively, "conservation," if practiced so extensively as to be an alternative to hydrocarbon and nuclear power, is merely a politically correct word for "poverty."

The current untenable situation in which the United States is losing $300 billion per year to pay for foreign oil and gas is not the result of failures of government energy production efforts. The U.S. government does not produce energy. Energy is produced by private industry. Why then has energy production thrived abroad while domestic production has stagnated?

This stagnation has been caused by United States government taxation, regulation, and sponsorship of litigation, which has made the U.S. a very unfavorable place to produce energy. In addition, the U.S. government has spent vast sums of tax money subsidizing inferior energy technologies for political purposes.

It is not necessary to discern in advance the best course to follow. Legislative repeal of taxation, regulation, incentives to litigation, and repeal of all subsidies of energy generation industries would stimulate industrial development, wherein competition could then automatically determine the best paths.

Nuclear power is safer, less expensive, and more environmentally benign than hydrocarbon power, so it is probably the better choice for increased energy production. Solid, liquid and gaseous hydrocarbon fuels provide, however, many conveniences, and a national infrastructure to use them is already in place. Oil from shale or coal liquefaction is less expensive than crude oil at current prices, but its ongoing production costs are higher than those for already developed oil fields. There is, therefore, an investment risk that crude oil prices could drop so low that liquefaction plants could not compete. Nuclear energy does not have this disadvantage, since the operating costs of nuclear power plants are very low.

Figure 27 illustrates, as an example, one practical and environmentally sound path to U.S. energy independence. At present 19% of U.S. electricity is produced by 104 nuclear power reactors with an average generating output in 2006 of 870 megawatts per reactor, for a total of about 90 GWe (gigawatts) (125). If this were increased by 560 GWe, nuclear power could fill all current U.S. electricity requirements and have 230 GWe left over for export as electricity or as hydrocarbon fuels replaced or manufactured.

Figure 26: Delivered cost per kilowatt hour of electrical energy in Great Britain in 2006, without CO2 controls (126). These estimates include all capital and operational expenses for a period of 50 years. Micro wind or solar are units installed for individual homes.


Thus, rather than a $300 billion trade loss, the U.S. would have a $200 billion trade surplus ?and installed capacity for future U.S. requirements. Moreover, if heat from additional nuclear reactors were used for coal liquefaction and gasification, the U.S. would not even need to use its oil resources. The U.S. has about 25% of the world's coal reserves. This heat could also liquify biomass, trash, or other sources of hydrocarbons that might eventually prove practical.

Figure 27: Construction of one Palo Verde installation with 10 reactors in each of the 50 states. Energy trade deficit is reversed by $500 billion per year, resulting in a $200 billion annual surplus. Currently, this solution is not possible owing to misguided government policies, regulations, and taxation and to legal maneuvers available to anti-nuclear activists. These impediments should be legislatively repealed.


The Palo Verde nuclear power station near Phoenix, Arizona, was originally intended to have 10 nuclear reactors with a generating capacity of 1,243 megawatts each. As a result of public hysteria caused by false information ?very similar to the human-caused global warming hysteria being spread today, construction at Palo Verde was stopped with only three operating reactors completed. This installation is sited on 4,000 acres of land and is cooled by waste water from the city of Phoenix, which is a few miles away. An area of 4,000 acres is 6.25 square miles or 2.5 miles square. The power station itself occupies only a small part of this total area.

If just one station like Palo Verde were built in each of the 50 states and each installation included 10 reactors as originally planned for Palo Verde, these plants, operating at the current 90% of design capacity, would produce 560 GWe of electricity. Nuclear technology has advanced substantially since Palo Verde was built, so plants constructed today would be even more reliable and efficient.

Assuming a construction cost of $2.3 billion per 1,200 MWe reactor (127) and 15% economies of scale, the total cost of this entire project would be $1 trillion, or 4 months of the current U.S. federal budget. This is 8% of the annual U.S. gross domestic product. Construction costs could be repaid in just a few years by the capital now spent by the people of the United States for foreign oil and by the change from U.S. import to export of energy.

The 50 nuclear installations might be sited on a population basis. If so, California would have six, while Oregon and Idaho together would have one. In view of the great economic value of these facilities, there would be vigorous competition for them.

In addition to these power plants, the U.S. should build fuel reprocessing capability, so that spent nuclear fuel can be reused. This would lower fuel cost and eliminate the storage of high-level nuclear waste. Fuel for the reactors can be assured for 1,000 years (128) by using both ordinary reactors with high breeding ratios and specific breeder reactors, so that more fuel is produced than consumed.

About 33% of the thermal energy in an ordinary nuclear reactor is converted to electricity. Some new designs are as high as 48%. The heat from a 1,243 MWe reactor can produce 38,000 barrels of coal-derived oil per day (129). With one additional Palo Verde installation in each state for oil production, the yearly output would be at least 7 billion barrels per year with a value, at $60 per barrel, of more than $400 billion per year. This is twice the oil production of Saudi Arabia. Current proven coal reserves of the United States are sufficient to sustain this production for 200 years (128). This liquified coal exceeds the proven oil reserves of the entire world. The reactors could produce gaseous hydrocarbons from coal, too.

The remaining heat from nuclear power plants could warm air or water for use in indoor climate control and other purposes.

Nuclear reactors can also be used to produce hydrogen, instead of oil and gas (130,131). The current cost of production and infrastructure is, however, much higher for hydrogen than for oil and gas. Technological advance reduces cost, but usually not abruptly. A prescient call in 1800 for the world to change from wood to methane would have been impracticably ahead of its time, as may be a call today for an abrupt change from oil and gas to hydrogen. In distinguishing the practical from the futuristic, a free market in energy is absolutely essential.

Surely these are better outcomes than are available through international rationing and taxation of energy as has been recently proposed (82,83,97,123). This nuclear energy example demonstrates that current technology can produce abundant inexpensive energy if it is not politically suppressed.

There need be no vast government program to achieve this goal. It could be reached simply by legislatively removing all taxation, most regulation and litigation, and all subsidies from all forms of energy production in the U.S., thereby allowing the free market to build the most practical mixture of methods of energy generation.

With abundant and inexpensive energy, American industry could be revitalized, and the capital and energy required for further industrial and technological advance could be assured. Also assured would be the continued and increased prosperity of all Americans.

The people of the United States need more low-cost energy, not less. If this energy is produced in the United States, it can not only become a very valuable export, but it can also ensure that American industry remains competitive in world markets and that hoped-for American prosperity continues and grows.

In this hope, Americans are not alone. Across the globe, billions of people in poorer nations are struggling to improve their lives. These people need abundant low-cost energy, which is the currency of technological progress.

In newly developing countries, that energy must come largely from the less technologically complicated hydrocarbon sources. It is a moral imperative that this energy be available. Otherwise, the efforts of these peoples will be in vain, and they will slip backwards into lives of poverty, suffering, and early death.

Energy is the foundation of wealth. Inexpensive energy allows people to do wonderful things. For example, there is concern that it may become difficult to grow sufficient food on the available land. Crops grow more abundantly in a warmer, higher CO2 environment, so this can mitigate future problems that may arise (12).

Energy provides, however, an even better food insurance plan. Energy-intensive hydroponic greenhouses are 2,000 times more productive per unit land area than are modern American farming methods (132). Therefore, if energy is abundant and inexpensive, there is no practical limit to world food production.

Fresh water is also believed to be in short supply. With plentiful inexpensive energy, sea water desalination can provide essentially unlimited supplies of fresh water.

During the past 200 years, human ingenuity in the use of energy has produced many technological miracles. These advances have markedly increased the quality, quantity, and length of human life. Technologists of the 21st century need abundant, inexpensive energy with which to continue this advance.

Were this bright future to be prevented by world energy rationing, the result would be tragic indeed. In addition to human loss, the Earth's environment would be a major victim of such a mistake. Inexpensive energy is essential to environmental health. Prosperous people have the wealth to spare for environmental preservation and enhancement. Poor, impoverished people do not.

CONCLUSIONS
There are no experimental data to support the hypothesis that increases in human hydrocarbon use or in atmospheric carbon dioxide and other greenhouse gases are causing or can be expected to cause unfavorable changes in global temperatures, weather, or landscape. There is no reason to limit human production of CO2, CH4, and other minor greenhouse gases as has been proposed (82,83,97,123).
We also need not worry about environmental calamities even if the current natural warming trend continues. The Earth has been much warmer during the past 3,000 years without catastrophic effects. Warmer weather extends growing seasons and generally improves the habitability of colder regions.

As coal, oil, and natural gas are used to feed and lift from poverty vast numbers of people across the globe, more CO2 will be released into the atmosphere. This will help to maintain and improve the health, longevity, prosperity, and productivity of all people.

The United States and other countries need to produce more energy, not less. The most practical, economical, and environmentally sound methods available are hydrocarbon and nuclear technologies.

Human use of coal, oil, and natural gas has not harmfully warmed the Earth, and the extrapolation of current trends shows that it will not do so in the foreseeable future. The CO2 produced does, however, accelerate the growth rates of plants and also permits plants to grow in drier regions. Animal life, which depends upon plants, also flourishes, and the diversity of plant and animal life is increased.

Human activities are producing part of the rise in CO2 in the atmosphere. Mankind is moving the carbon in coal, oil, and natural gas from below ground to the atmosphere, where it is available for conversion into living things. We are living in an increasingly lush environment of plants and animals as a result of this CO2 increase. Our children will therefore enjoy an Earth with far more plant and animal life than that with which we now are blessed.
http://www.oism.org/pproject/s33p36.htm

沒有留言: